REACTIVITY OF CrVO4 WITH FeVO4

M. Kurzawa

INSTITUTE OF FUNDAMENTAL CHEMISTRY, TECHNICAL UNIVERSITY OF SZCZECIN, AL. PIASTW 42, 71-065 SZCZECIN, POLAND

It has been confirmed by DTA and X-ray powder diffraction that the components of the CrVO₄-FeVO₄ system react with each other in the solid state yielding a compound, FeCr(VO₄)₂. FeCr(VO₄)₂ has been found to melt incongruently at $870 \pm 10^{\circ}$ C depositing Fe_{2-2x}Cr_{2x}O_{3(s.s.)}.

Chromium(III) orthovanadate, iron(III) orthovanadate and systems in which these compounds occur - have been objects of investigations in very respect, first of all, due to their interesting catalytic properties [1]. Hence, it seemed interesting to study how CrVO4 and FeVO4 react with each other in the solid state.

The literature review has shown that the structure and physico-chemical properties of CrVO4 and FeVO4 are well known [2-7], but informations relevant to the CrVO4-FeVO4 system are few and inconsistent [8-11]. Thus, according to Vatolin, Attfield and Lavat [8, 10, 11], CrVO4 forms with FeVO4 a solid solution $Fe_{1-x}Cr_xVO_4$ adopt the α -MnMoO4 structure, which is different from those of the end members of the series, but Fotiev with his associates find that a compound, FeCr(VO4)₂, exists in the CrVO₄-FeVO4 system, and the system components do not form a solid solution.

Experimental

CrVO4, FeVO4, analar V₂O5 (Reachim), Cr₂O₃ pure (POCh, Gliwice) and analar α -Fe₂O₃ (VEB, GDR) were used to experiments. Chromium(III) orthovanadate was obtained by heating an equimolar mixture of CrO₃ with V₂O₅ under following conditions: 500°→24 h; 550°→24 h; 600°→24 h; 630° →24 h; 700°→24 h; 750°→24 h; 800°→24 h. Iron(III) orthovanadate was ob-

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

tained by calcinating an equimolar mixture of Fe₂O₃ and V₂O₅ at $600^{\circ} \rightarrow 24$ h; $650^{\circ} \rightarrow 24$ h and $700^{\circ} \rightarrow 72$ h.

DTA was made with a derivatograph F. Paulik-J. Paulik-L. Erdey in air, in quartz crucibles, at 20-1000°, at a heating rate 10 deg/min. The weight of samples was 1000 mg in each case.

The phase composition of preparations was found by X-ray powder diffraction (a diffractometer A₂ with a goniometer HZG-4, $CoK_{\overline{\alpha}}$) and on the data from the ASTM cards [12] and publications [3, 9].

To experiments were used three mixtures of CrVO₄ and FeVO₄ with following molar ratios of components: 2:1, 1:1 and 1:2, which corresponds to 66.67, 50.00 and 33.33% mol of CrVO₄ in a sample. Substrates weighed in the above proportions were mixed by grinding, pastilled and heated in air, at $600^{\circ} \rightarrow 24$ h; $650^{\circ} \rightarrow 24$ h; $700^{\circ} \rightarrow 48$ h and $700^{\circ} \rightarrow 72$ h. After each roasting cycle the samples were cooled down slowly to ambient temperature, ground, examined by DTA, their phase composition having been established they were repastilled.

Results and discussion

Table 1 shows the compositions of initial mixtures and X-ray powder diffraction results of preparations obtained on the last stage of heating at 700° during 72 h.

 Table 1 Compositions of initial mixtures and X-ray powder diffraction results of samples on the last heating cycle

No	Composition of initial mixtures, mol %		X-ray powder diffraction results
	CrVO ₄	FeVO ₄	
1	66.67	33.33	CrVO4, FeCr(VO4)2
2	50.00	50.00	FeCr(VO ₄) ₂
3	33.33	66.67	FeVO4, FeCr(VO4)2

X-ray powder diffraction of a sample containing 66.67% mol of CrVO4 in its initial mixture shows that it is a mixture of CrVO4 and FeCr(VO4)₂. It applies that CrVO4 reacts with FeVO4 yielding FeCr(VO4)₂ - a compound to existence of which pointed Fotiev only [9]. The phase composition of a preparation containing 50.00% mol of CrVO4 in its initial mixture shows that, in the solid state, an equimolar mixture of CrVO4 and FeVO4 reacts to completion yielding FeCr(VO4)₂ in accord an equation:

$$CrVO_{4(s)} + FeVO_{4(s)} = FeCr(VO_{4})_{2(s)}$$
(1)

FeVO₄ and FeCr(VO_4)₂ were found in the third sample.

The FeCr(VO₄)₂ phase was obtained, too, from oxides by calcinating a mixture of Fe₂O₃, Cr₂O₃ and V₂O₅ with a molar ratio 1:1:2 under given conditions. On the diffraction pattern of the preparation obtained a reflexion set was recorded, identical with a set recorded on the diffraction pattern of a preparation obtained by calcinating an equimolar mixture of CrVO₄ and FeVO₄.

Data in Table 2 show that on the diffraction pattern of FeCr(VO₄)₂ there are, beside lines whose X-ray characteristics gave Fotiev [9], other diffraction lines, starred in the Table 2. Fotiev [9] has found that FeCr(VO₄)₂ melts incongruently at $890\pm5^{\circ}$. The figure shows a DTA curve of FeCr(VO₄)₂ on which, at 20-1000°, has been recorded only the melting effect of the phase at $875\pm10^{\circ}$. Presence of only one effect on the DTA curve of FeCr(VO₄)₂ implies that the melting effect of a solid depositing during incongruent melting of FeCr(VO₄)₂ lies above 1000°. In order to establish the kind of a solid depositing during melting of FeCr(VO₄)₂, the FeCr(VO₄)₂ phase was heated during 4 h at 880° and on vehemently cooling down it was analyzed by X-ray

Fig. 1 DTA curve of FeCr(VO₄)₂

2183

powder diffraction. The analysis has shown that a solid depositing during melting of $FeCr(VO_4)_2$ is the solid solution $Fe_{2-2x}Cr_{2x}O_3$.

d,	I,
Å	%
6.47	25
5.15	5
3.66	5
3.39	5
3.36	5
3.27	30
3.23	100
3.19	30
3.17	25
3.09	5
3.04	20
2.79	5
2.69	15
2.63	10
2.58	15
2.51	5
2.46	5
2.35	5
2.22	5
2.17	5
2.15	40
2.08	5
2.01	10
1.942	5
1.926	5
1.855	5
1.839	5
1.709	10

Table 2 Interplanar distances for FeCr(VO₄)₂ and relative intensities of the corresponding reflexions

The studies confirm that, in the solid state, $CrVO_4$ reacts with FeVO₄ to form FeCr(VO₄)₂. It has also been found that FeCr(VO₄)₂ can be obtained from a reaction in the solid state, both from CrVO₄ and FeVO₄ and an appropriate oxide mixture. X-ray characteristics of the phase at the angle range 2θ :10-65° CoK_{$\overline{\alpha}$} has been given, in which the existence of reflexions overlooked by Fotiev [9] have been shown.

References

- 1 N. Pernicone, J. Less-Common Met., 36 (1974) 289.
- 2 M. J. Isasi, R. Saez-Puche and M. L. Veiga, Mater. Res. Bull., 23 (1988) 595.
- 3 J. Walczak and E. Filipek, J. Thermal Anal. in press.
- 4 J. Amiel, D. Coleilis and D. Olivier, C. R. Acad. Sci., Paris, 263 (1966) 224.
- 5 R. C. Kerby and J. R. Wilson, Can. J.Chem., 51 (1973) 1032.
- 6 B. Robertson and K. Kostiner, J. Solid State Chem., 4 (1972) 29.
- 7 J. Walczak, J. Ziółkowski, M. Kurzawa, J. Osten-Sacken and M. Lysio, Pol. J. Chem., 29 (1985) 255.
- 8 N. A. Vatolin, N. G. Moleva, P. I. Volkova and T. V. Sanozhnikova, Okislenie vanadievykh schlakov, Izd. Nauka, 1978.
- 9 A. A. Fotiev, L. L. Surat, G. A. Korablev and A. I. Tretiakov, Zh. Neorg. Khim., 26 (1981) 242. 10 J. P. Attfield, J. Solid State Chem., 67 (1987) 58.
- 11 A. E. Lavat, M. C. Grasselli and E. J. Baran, J. Solid State Chem. 78 (1989) 206.
- 12 Joint Committee of Powder Diffraction File: 6-504, 9-389, 13-543, 24-541, 25-418.

Zusammenfassung — Mittels DTA und Debye-Scherrer-Untersuchungen konnte bewiesen werden, daß die Komponenten des Systemes CrVO4-FeVO4 im festen Zustand miteinander reagieren und die Verbindung FeCr(VO4)₂ bilden. FeCr(VO4)₂ schmilzt inkongruent bei 870 ± 10 C und scheidet dabei Fe_{2-2x}Cr_{2x}O_{3(s.s.)} ab.